Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.01.02.522505

ABSTRACT

Development of effective vaccines for infectious diseases has been one of the most successful global health interventions in history. Though, while ideal subunit vaccines strongly rely on antigen and adjuvant(s) selection, the mode and timescale of exposure to the immune system has often been overlooked. Unfortunately, poor control over the delivery of many adjuvants, which play a key role in enhancing the quality and potency of immune responses, can limit their efficacy and cause off-target toxicities. There is critical need for new adjuvant delivery technologies to enhance their efficacy and boost vaccine performance. Nanoparticles (NPs) have been shown to be ideal carriers for improving antigen delivery due to their shape and size, which mimic viral structures, but have been generally less explored for adjuvant delivery. Here, we describe the design of self-assembled poly(ethylene glycol)-b-poly(lactic acid) nanoparticles decorated with CpG, a potent TLR9 agonist, to increase adjuvanticity in COVID-19 vaccines. By controlling the surface density of CpG, we show that intermediate valency is a key factor for TLR9 activation of immune cells. When delivered with the SARS-CoV-2 spike protein, CpG NP adjuvants greatly improve the magnitude and duration of antibody responses when compared to free CpG, and result in overall greater breadth of immunity against variants of concern. Moreover, encapsulation of CpG NPs into injectable polymeric-nanoparticle (PNP) hydrogels enhance the spatiotemporal control over co-delivery of CpG NP adjuvant and spike protein antigen such that a single immunization of hydrogel-based vaccines generates comparable humoral responses as a typical prime-boost regimen of soluble vaccines. These delivery technologies can potentially reduce the costs and burden of clinical vaccination, both of which are key elements in fighting a pandemic.


Subject(s)
Communicable Diseases , Drug-Related Side Effects and Adverse Reactions , COVID-19
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.12.12.520166

ABSTRACT

Most vaccines require several immunizations to induce robust immunity, and indeed, most SARS-CoV-2 vaccines require an initial two-shot regimen followed by several boosters to maintain efficacy. Such a complex series of immunizations unfortunately increases the cost and complexity of populations-scale vaccination and reduces overall compliance and vaccination rate. In a rapidly evolving pandemic affected by the spread of immune-escaping variants, there is an urgent need to develop vaccines capable of providing robust and durable immunity. In this work, we developed a single immunization SARS-CoV-2 subunit vaccine that could rapidly generate potent, broad, and durable humoral immunity. We leveraged injectable polymer-nanoparticle (PNP) hydrogels as a depot technology for the sustained delivery of a nanoparticle COVID antigen displaying multiple copies of the SARS-CoV-2 receptor-binding-domain (RBD NP), and potent adjuvants including CpG and 3M052. Compared to a clinically relevant prime-boost regimen with soluble vaccines formulated with CpG/Alum or 3M052/Alum adjuvants, PNP hydrogel vaccines more rapidly generated higher, broader, and more durable antibody responses. Additionally, these single-immunization hydrogel-based vaccines elicited potent and consistent neutralizing responses. Overall, we show that PNP hydrogels elicit improved anti-COVID immune responses with only a single administration, demonstrating their potential as critical technologies to enhance our overall pandemic readiness.

SELECTION OF CITATIONS
SEARCH DETAIL